
Estimate Means in Parallel for Multiple Grouping Variables in Mobility Survey
Source:R/mzmv_estimate.R
mzmv_mean_map.Rd
mzmv_mean_map()
estimates weighted means and confidence intervals for a set of features of the mobility survey, optionally grouped by one or more variables.
Arguments
- data
A data frame or tibble.
- variable
Character vector of variable names to be estimated. Must be quoted (e.g.,
"annual_family_income"
). For multiple variables, pass as a vector (e.g.,c("annual_family_income", "annual_household_income")
). Does not support bare (unquoted) variable names.- ...
Grouping variables. Can be passed unquoted (e.g.,
gender
,birth_country
) or quoted (e.g.,"gender"
,"birth_country"
). If omitted, results are aggregated across the whole dataset.- weight
Unquoted or quoted name of the sampling weights column (must exist in
data
). For programmatic use with a string variable (e.g.,wt <- "weights"
), use!!sym(wt)
in the function call.- cf
Numeric correction factor for the confidence interval. Default is 1.14.
- alpha
Numeric significance level for confidence intervals. Default is 0.1 (90% CI).
Value
A tibble with columns:
- variable
Name of the estimated variable.
- group_vars
Name of the grouping variable.
- group_vars_value
Value of the grouping variable.
- occ
Number of cases or observations.
- wmean
Weighted mean.
- ci
Confidence interval.
Examples
# Multiple quoted variables
mzmv_mean_map(
nhanes,
variable = c("annual_family_income", "annual_household_income"),
gender,
birth_country,
weight = weights
)
#> # A tibble: 10 × 6
#> variable group_vars group_vars_value occ wmean ci
#> <chr> <chr> <fct> <int> <dbl> <dbl>
#> 1 annual_family_income gender Female 4917 11.5 0.358
#> 2 annual_family_income gender Male 4725 11.6 0.334
#> 3 annual_family_income birth_country US 7517 11.3 0.251
#> 4 annual_family_income birth_country Other 2123 12.8 0.744
#> 5 annual_family_income birth_country Missing 2 47.8 48.0
#> 6 annual_household_income gender Female 4906 11.8 0.350
#> 7 annual_household_income gender Male 4720 12.0 0.328
#> 8 annual_household_income birth_country US 7504 11.6 0.243
#> 9 annual_household_income birth_country Other 2120 13.3 0.747
#> 10 annual_household_income birth_country Missing 2 47.8 48.0
# No grouping variables
mzmv_mean_map(
nhanes,
variable = "annual_family_income",
weight = weights
)
#> # A tibble: 1 × 6
#> variable group_vars group_vars_value occ wmean ci
#> <chr> <chr> <chr> <int> <dbl> <dbl>
#> 1 annual_family_income .dummy_group all 9642 11.5 0.245
# Programmatic use
wt <- "weights"
mzmv_mean_map(
nhanes,
variable = "annual_family_income",
gender,
birth_country,
weight = !!rlang::sym(wt)
)
#> # A tibble: 5 × 6
#> variable group_vars group_vars_value occ wmean ci
#> <chr> <chr> <fct> <int> <dbl> <dbl>
#> 1 annual_family_income gender Female 4917 11.5 0.358
#> 2 annual_family_income gender Male 4725 11.6 0.334
#> 3 annual_family_income birth_country US 7517 11.3 0.251
#> 4 annual_family_income birth_country Other 2123 12.8 0.744
#> 5 annual_family_income birth_country Missing 2 47.8 48.0