Skip to contents

se_total() estimates the totals and confidence intervals of FSO structural surveys.

Usage

se_total(data, ..., strata, weight, alpha = 0.05)

Arguments

data

A data frame or tibble.

...

Optional grouping variables. Can be passed unquoted (e.g., gender, birth_country) or programmatically using !!!syms(c("gender", "birth_country")).

strata

Unquoted or quoted name of the strata column. Defaults to zone if omitted.

weight

Unquoted or quoted name of the sampling weights column. For programmatic use with a string variable (e.g., wt <- "weights"), use !!sym(wt) in the function call.

alpha

Numeric significance level for confidence intervals. Default is 0.05 (95% CI).

Value

A tibble with total estimates for all grouping column combinations, including:

<variable>

Value of the grouping variables passed in ....

occ

number of observations in survey sample.

total

population estimate.

vhat, stand_dev

Estimated variance of the total (vhat) and its standard deviation (stand_dev, square root of the variance).

ci, ci_per, ci_l, ci_u

Confidence interval: half-width (ci), percentage of the total (ci_per), lower (ci_l) and upper (ci_u) bounds.

Details

The condition argument has been deprecated and is no longer supported. Please use ... to pass grouping variables either unquoted or programmatically using rlang:

* Interactive use:

se_total(data, weight = my_weight, group1, group2)

* Programmatic use:

weight_var <- "my_weight"

group_vars <- c("group1", "group2")

se_total(data, weight = !!rlang::sym(weight_var), !!!rlang::syms(group_vars))

Examples

# One grouping variable
se_total(
  data = nhanes,
  strata = strata,
  weight = weights,
  gender
)
#> # A tibble: 2 × 9
#>   gender   occ      total    vhat stand_dev       ci ci_per       ci_l      ci_u
#>   <chr>  <int>      <dbl>   <dbl>     <dbl>    <dbl>  <dbl>      <dbl>     <dbl>
#> 1 Female  5079 161922446. 7.82e12  2795884. 5479833.   3.38 156442613.    1.67e8
#> 2 Male    4892 154558598. 7.90e12  2810039. 5507576.   3.56 149051022.    1.60e8
# Multiple grouping variables
se_total(
  data = nhanes,
  strata = strata,
  weight = weights,
  gender, marital_status, birth_country
)
#> # A tibble: 33 × 11
#>    gender marital_status     birth_country   occ  total    vhat stand_dev     ci
#>    <chr>  <chr>              <chr>         <int>  <dbl>   <dbl>     <dbl>  <dbl>
#>  1 Female Divorced           Other           108 2.25e6 7.81e10   279466. 5.48e5
#>  2 Female Divorced           US              260 1.16e7 8.98e11   947386. 1.86e6
#>  3 Female Don't Know         US                1 5.94e4 3.53e 9    59381. 1.16e5
#>  4 Female Living with partn… Missing           1 1.17e4 1.37e 8    11709. 2.29e4
#>  5 Female Living with partn… Other            87 1.97e6 5.26e10   229323. 4.49e5
#>  6 Female Living with partn… US              183 8.95e6 6.52e11   807522. 1.58e6
#>  7 Female Married            Other           562 1.22e7 3.56e11   596967. 1.17e6
#>  8 Female Married            US              796 5.02e7 4.82e12  2196586. 4.31e6
#>  9 Female Missing            Missing           1 1.80e4 3.23e 8    17984. 3.52e4
#> 10 Female Missing            Other           137 1.97e6 3.52e10   187669. 3.68e5
#> # ℹ 23 more rows
#> # ℹ 3 more variables: ci_per <dbl>, ci_l <dbl>, ci_u <dbl>
# Programmatic use and quoted variables
v <- c("gender", "marital_status", "birth_country")
se_total(
  nhanes,
  weight = "weights",
  strata = "strata",
  !!!rlang::syms(v)
)
#> # A tibble: 33 × 11
#>    gender marital_status     birth_country   occ  total    vhat stand_dev     ci
#>    <chr>  <chr>              <chr>         <int>  <dbl>   <dbl>     <dbl>  <dbl>
#>  1 Female Divorced           Other           108 2.25e6 7.81e10   279466. 5.48e5
#>  2 Female Divorced           US              260 1.16e7 8.98e11   947386. 1.86e6
#>  3 Female Don't Know         US                1 5.94e4 3.53e 9    59381. 1.16e5
#>  4 Female Living with partn… Missing           1 1.17e4 1.37e 8    11709. 2.29e4
#>  5 Female Living with partn… Other            87 1.97e6 5.26e10   229323. 4.49e5
#>  6 Female Living with partn… US              183 8.95e6 6.52e11   807522. 1.58e6
#>  7 Female Married            Other           562 1.22e7 3.56e11   596967. 1.17e6
#>  8 Female Married            US              796 5.02e7 4.82e12  2196586. 4.31e6
#>  9 Female Missing            Missing           1 1.80e4 3.23e 8    17984. 3.52e4
#> 10 Female Missing            Other           137 1.97e6 3.52e10   187669. 3.68e5
#> # ℹ 23 more rows
#> # ℹ 3 more variables: ci_per <dbl>, ci_l <dbl>, ci_u <dbl>